Worksheet 2 - exponential, logarithmic, and trigonometric functions

If you had trouble with question 2a, 2b, or 2c, do these problems.

- 1. Compute the following: $\log_2(8)$, $\log_2(4)$, $\log_2(2)$, $\log_2(1)$, $\log_2(1/2)$ and $\log_2(1/4)$.
- 2. Sketch the graphs of the following functions, indicating where they cross the axes.
 - (a) $f(x) = e^x$
 - (b) $f(x) = e^{-x}$
 - (c) $f(x) = \log_2 x$
 - (d) $f(x) = \ln x$
- 3. Name a real world phenomenon that can be modeled using $f(x) = e^{-x}$.
- 4. Simplify $\ln((e^2)(e^3))$ and $2\ln(x) \ln(x^3)$.
- 5. Solve for x in terms of y if $2\log(x) = 6 + 3\log y$.
- 6. Sketch the following functions, indicating where they cross the axes.
 - (a) $f(x) = \cos x$
 - (b) $f(x) = \sin x$
 - (c) $f(x) = \tan x$
 - (d) $f(x) = \sec x$

7.	Compute $\sin(0)$,	$\sin(\pi/2)$,	$\sin(\pi)$,	$\cos(0),$	$\cos(\pi/2)$,	$\cos(\pi)$,	and $tan(0)$.	

8. Draw half of an equilateral triangle (with angles
$$\pi/3$$
, $\pi/6$ and $\pi/2$). Compute $\cos(\pi/3)$, $\sin(\pi/3)$, $\tan(\pi/3)$, $\cos(\pi/6)$, $\sin(\pi/6)$, and $\tan(\pi/6)$.

9. Draw an isosceles right triangle (with angles
$$\pi/2$$
, $\pi/4$, and $\pi/4$). Compute $\sin(\pi/4)$, $\cos(\pi/4)$ and $\tan(\pi/4)$.

10. Cool fact: a point (x, y) on the unit circle $x^2 + y^2 = 1$ has values $(x, y) = (\cos \theta, \sin \theta)$, where θ is the angle measured counterclockwise from the positive x-axis to the ray from (0,0) to (x,y).

Compute $\cos(4\pi/3)$, $\cos(5\pi/3)$, $\sin(-3\pi/2)$, $\sin(-3\pi/4)$, $\tan(\pi/4)$, and $\tan(5\pi/4)$.

- 11. Use the trig identity $\sin^2 x + \cos^2 x = 1$ to derive the identity $\tan^2 x + 1 = \sec^2 x$.
- 12. Use the trig identity $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ to derive the identity $\sin(2a) = 2\sin a\cos a$.
- 13. Use the trig identity $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$ to derive the identities $\cos(2a) = 2\cos^2 a 1 = 1 2\sin^2 a$.
- 14. Name a real world phenomenon that can be modeled using $f(x) = e^{-x} \sin(x)$.