Name: \qquad

Worksheet 4 - absolute value, square roots, and inequalities

If you had trouble with question 4 a or 4 b , do these problems.

1. Graph the function $f(x)=|x-2|$ and then solve the inequality $|x-2|<1$.

Method 1: The function $|x-a|$ measures how far away x is from a. Use your graph or a number line to solve the inequality.
Method 2: $|x-a|<b$ is the same as $-b<x-a<b$. (Prove this to yourself.) Solve to get $a-b<x<a+b$.
2. Solve these inequalities for x.
(a) $|x-3|<4$.
(b) $\left|\frac{x-3}{2}\right|<1$
(c) $\left|\frac{x-1}{4}\right|<1$
(d) $|4(x-1)|<1$
3. Solve the following inequalities for x :
(a) $1 / x<4$
(b) $-x<1$
(c) $\sqrt{x}<4 \quad$ Careful - what is the domain of \sqrt{x} ?
(d) $\sqrt{x}>4$
(e) $\sqrt{\frac{1}{x}}<4$
(f) $\ln (x)<1$
4. For which values of x does $\sqrt{x^{2}}=x$? True or False: $\sqrt{x^{2}}=|x|$ for all x.
5. Solve $\sqrt{4-x^{2}}<1$.
6. Suppose that x is in the interval $[0,1 / 10]$, and y is between x and 0 . What is the largest that $x^{2} y^{3}$ can be?

