Name:___

Worksheet 5 - limits and growth rates

If you had trouble with problem 5a or 5b, do the following problems.

1. Find the limits. First try plugging in x = 0 to see if there is an easy answer.

(a)
$$\lim_{x \to 0^{+}} \frac{1}{x}$$

(b) $\lim_{x \to 0^{+}} \frac{x+1}{x}$
(c) $\lim_{x \to 0^{+}} \frac{x+e^{x}}{x^{2}+1}$
(d) $\lim_{x \to 0^{+}} \frac{x+x^{3}}{x^{2}+3x^{3}}$

- 2. When can you use L'Hospital's rule?
- 3. If f and g are functions, and positive for sufficiently large x, we say that "f(x) grows faster than g(x) as x goes to infinity" if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty.$$

Which of each pair of functions grows faster as x goes to infinity?

- (a) x^2 or x^3 ?
- (b) x^{100} or e^x ?
- (c) \sqrt{x} or $\ln x$?
- (d) $x^{1/100}$ or $\ln x$?
- (e) $x^{1/100}$ or $2 + \sin x$?
- 4. Find the limits. Trick: Compare the fastest growing term in the numerator to the fastest growing term in the denominator.

(a)
$$\lim_{x \to \infty} \frac{1}{x}$$

(b)
$$\lim_{x \to \infty} \frac{x+1}{x}$$

(c)
$$\lim_{x \to \infty} \frac{x+1}{x^2+1}$$

(d)
$$\lim_{x \to \infty} \frac{x+x^3}{x^2+3x^3}$$

(e)
$$\lim_{x \to \infty} \frac{\ln x+x}{\sqrt{x}}$$

(f)
$$\lim_{x \to \infty} \frac{x+x^2}{1+e^x}$$

(g)
$$\lim_{x \to \infty} \frac{2+\sin x}{1+\ln x}$$