Name: \qquad

Worksheet 5 - limits and growth rates

If you had trouble with problem 5a or 5 b , do the following problems.

1. Find the limits. First try plugging in $x=0$ to see if there is an easy answer.
(a) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$
(b) $\lim _{x \rightarrow 0^{+}} \frac{x+1}{x}$
(c) $\lim _{x \rightarrow 0^{+}} \frac{x+e^{x}}{x^{2}+1}$
(d) $\lim _{x \rightarrow 0^{+}} \frac{x+x^{3}}{x^{2}+3 x^{3}}$
2. When can you use L'Hospital's rule?
3. If f and g are functions, and positive for sufficiently large x, we say that " $f(x)$ grows faster than $g(x)$ as x goes to infinity" if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty
$$

Which of each pair of functions grows faster as x goes to infinity?
(a) x^{2} or x^{3} ?
(b) x^{100} or e^{x} ?
(c) \sqrt{x} or $\ln x$?
(d) $x^{1 / 100}$ or $\ln x$?
(e) $x^{1 / 100}$ or $2+\sin x ?$
4. Find the limits. Trick: Compare the fastest growing term in the numerator to the fastest growing term in the denominator.
(a) $\lim _{x \rightarrow \infty} \frac{1}{x}$
(b) $\lim _{x \rightarrow \infty} \frac{x+1}{x}$
(c) $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+1}$
(d) $\lim _{x \rightarrow \infty} \frac{x+x^{3}}{x^{2}+3 x^{3}}$
(e) $\lim _{x \rightarrow \infty} \frac{\ln x+x}{\sqrt{x}}$
(f) $\lim _{x \rightarrow \infty} \frac{x+x^{2}}{1+e^{x}}$
(g) $\lim _{x \rightarrow \infty} \frac{2+\sin x}{1+\ln x}$

