Name: \qquad

Worksheet 6 - Definition of the derivative, Fundamental Theorem of Calculus.

If you had trouble with question 6 , do the following problems.
For the problems below, assume the car is moving in a straight line.

1. Suppose that the position of a car is given by $f(t)$ for $0 \leq t \leq 10$, where f is given in meters and t is given in seconds.
(a) Write down an expression for the average velocity of the car between time $t=1$ and $t=2$.
(b) Write down an expression for the average velocity of the car between time $t=1$ and $t=1.05$.
(c) Use limits to write down an expression for the instantaneous velocity of the car at time $t=1$.
2. Complete this limit definition of the derivative: Given a function f, the derivative of f at a is given by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}(\square)
$$

3. Suppose that the velocity of a car is given by $v(t)$ for $0 \leq t \leq 10$, where v is given in meters/second and t is given in seconds.
(a) Write down an expression to estimate the change in position of the car between time $t=1$ and $t=1.05$.
(b) Write down an expression to estimate the change in position of the car between time $t=1$ and $t=2$, where you get to measure the velocity every twentieth of a second.
(c) Use limits to write down an expression for the actual change in position of the car between $t=1$ and $t=2$.
(d) What do any of these questions have to do with the area under the graph of $v(t)$?
4. Precisely state both parts of the Fundamental Theorem of Calculus.
5. Suppose that water flows into a tank at a RATE of $200-4 t$ liters per minute, for $0 \leq t \leq 50$. If the tank starts with 1000 liters at time $t=0$, how much liquid will be in the tank at time $t=10$?
6. Find the derivative of $f(x)=\int_{0}^{x^{2}} U G L Y F U N C T I O N(t) d t$
7. Suppose that the triangle between the lines $x+y=1, y=0$, and $x=0$ is rotated about the y-axis to obtain a cone. Find the area of the circular slice of this cone at height y, and find the total volume of the cone.
