SARSI 2016

First Week Lectures
Math - Kim Whittlesey

Lecture 1

Non-Euclidean Geometry
الهندسة الإقليدية غير

In the Euclidean plane

1. What is a straight line?
2. What does parallel mean?

If a bug walks
on the plane and
does not turn
left or right,
then it goes in a straight line.

Also, the shortest curve connecting two points is on a straight line.

If two lines do

 not intersect, we say they are parallel.Suppose lines L and L' meet line M at different angles.

Do L and L^{\prime} meet?

Yes.

This is Euclid's

5th Axiom, which we'll talk more about later.

The Sphere

On the Sphere:

1. What is a straight line?
2. Can straight lines be parallel?

On a sphere, straight lines
 are great
 circles.

Which of

these curves
 are straight?

Only the red
curves here are straight.

Curves along
the smaller
circles are not
straight.

What happens if
two people at the
equator both
start going north along straight lines?

What happens if
two people at the equator both start going north along straight lines?

They'll meet at the north pole.

Straight lines
(great circles)
on the sphere
are never parallel.

On the

Euclidean plane,

 the sum of the interior angles of a triangle is always
On the

Euclidean plane,

 the sum of the interior angles of a triangle is always 180°.On a sphere, what can the sum of the
interior angles be?

Small triangles

 have angle sum just over 180°.

Big triangles
can have much
larger angle
sum.

Problem: Find a triangle on the sphere with angle sum 270°.

You can make a triangle on the sphere with 3 right angles.

sculpture by Henry Segerman
If you try to flatten the sphere to the plane, you have to distort shapes.

The Hyperbolic plane

knitting by Daina Taimina,
photo by Steve
Rowell

(a bit of) the Hyperbolic Plane

a hyperbolic leaf

Locally, every point looks

 like it is on a saddle.
We'll have to distort the space a bit to draw it in the plane.

We'll talk about two

 models.Our first model of hyperbolic space is the Poincaré disk.

Here, the

boundary circle is at infinity.

The same

distance looks

 smaller andsmaller as you go out to the boundary.

Picture credit: MC Escher, Josh Leyes

So distances

 are wrong.But the angles are correct.

What are the straight lines in the Poincaré disk?

Straight lines in

 the Poincaré disk are represented by arcs of circles that meet the
boundary circle

$$
\text { at } 90^{\circ} \text {. }
$$

Problem:

Sketch a few hyperbolic straight lines
on a Poincaré disk.

How do these

lines act
differently
than those on the sphere or
 the Euclidean plane?

Notice: Lines

that start near each other going in the
same direction eventually move apart.

If hyperbolic
lines L and L^{\prime} meet line M at different angles,
do L and L^{\prime}

have to meet?

No

L and L' do not have to meet.

In Euclidean

space, given a point P and a line L, there is only one line through P that

misses L.

In hyperbolic

 space, given a line L and a point P, there are an infinite number of lines going through P that miss L .

On the plane, the angle sum of a triangle is equal to 180°.

On the sphere, the angle sum of a triangle is greater than 180°

How do you think the angle sum behaves in hyperbolic space?

For small

triangles, the
angle sum is a bit less than 180°.

For large
triangles, the
angle sum can be much smaller.

If all three

 corners of the triangle are near infinity,then the angle
can be very
close to 0 .

The shadow of

 this sculpture gives a picture in the Poincare
sculpture by Henry Segerman

sculpture by Henry Segerman
If we shine the light from a different angle, we get another "map" of hyperbolic space.

The Upper Half Plane model. The boundary at infinity is the x-axis.

Distances are wrong, but angles are correct.

Lines are half circles meeting the boundary at 90°.

Problem: draw a few hyperbolic lines on the upper half plane

Given points P and Q, how could you use ruler and compass to find the hyperbolic line through them?

Draw the Euclidean line segment $P Q$ and find its perpendicular bisector.

Here is the hyperbolic line though P and Q.

More facts about hyperbolic space

Reflections: In the Euclidean plane, we can reflect across a line.

made with GeoGebra
page by Jordi Arnau

To reflect across a hyperbolic line, we use a circle inversion.

In the Euclidean plane, we measure distance by $d s^{2}=d x^{2}+d y^{2}$.

In the hyperbolic upper half plane, we use $d s^{2}=\left(d x^{2}+d y^{2}\right) / y^{2}$.

As you get closer to the x-axis, the hyperbolic distance between points get larger.

Summary: three

2-dimensional geometries

In 3 dimensions, there are actually 8 geometries.

 Here are 2 of them:

Euclidean 3-space

Hyperbolic 3-space
(the upper half space model)

Hyperbolic 3-space

Some History

Ancient Greece
 2400 years ago: Euclid

5 Axioms to describe geometry

Euclid's 1st

axiom

A straight
line segment
can be drawn
 through any
two points.

Euclid's 2nd:

Any straight
line segment
can be
extended indefinitely to

a straight line.

Euclid's 3rd:

A circle may
be drawn with any
point as center and any radius.

Euclid's 4th:

All right angles are equal.
(A right angle
is the angle at the foot of a perpendicular.)

Euclid's 5th:

If lines L and L^{\prime} meet line M so
that the interior angles do not add up to 180°, then L and L^{\prime} must intersect.

For over two thousand

 years, mathematicians wondered if the 5th axiom followed from the other 4.But it doesn't.

Axioms 1-4 work in the hyperbolic plane, but axiom 5 does
not.

They found new

 axioms that were equivalent to Euclid's5th:

Equivalent to

 Euclid's 5th:The angle sum of any triangle is 180°.

In hyperbolic

 space, the angle sum of any triangle is less than 180°.

Some mathematicians who

worked with Euclid's Elements:

- first known translation into Arabic: al-Hajjaj ibn Yusuf ibn Matar, 1300 years ago (الحجاج بن يوسف)
- al-Nairizi, al-Wafa' Buzjani, Al Kindi, Thabit Qurra, 1200 years ago (النيريزي , ابوالوفا بوزجانى , الكندي , ثابت بن قرة)
- al Haytham, al Din Tusi, al Khayyam, 1000 to 1100 years ago (الهيثم , الدين طوسى , الخيام)
- Girolamo Saccheri, Johann Lambert, Ferdinand Schweikart, Carl Gauss, Farkas and Janos Boylai, Nikolai Lobachevsky, 300-400 years ago

What about the sphere?

Euclid's axioms can be

interpreted to work on the
sphere, but then his proofs do not work. (Euclid actually missed
a few details, like needing a unique line through two points.)

شكرا جزيلا !

Some cool links:

1. https://www.youtube.com/watch?v=eGEQ_UuQtYs
2. $\mathrm{http}: / / / \mathrm{cs.unm} . e d u / \sim$ joel/NonEuclid/
3. $\mathrm{http}: / / w w w$. geogebra.org/m/1477903
4. https://www.youtube.com/watch?
$\mathrm{v}=\mathrm{xVE} 18 \mathrm{hh} 4 \times$ Dw\&nohtml5=False
5. https://www.youtube.com/watch?v=AKotMPGFJYk
6. $h t t p s: / / w w w . y o u t u b e . c o m / w a t c h ? v=H w i _F G k g l o o$
