SARSI 2016

First Week Lectures
 Math - Kim Whittlesey

Lecture 2

Tilings in non-Euclidean geometry
الزليج

Tilings of the Euclidean plane

Regular Tilings

Regular polygon:

all sides have
the same
length, all
angles have the

same size.

Regular Tilings:

Only use one kind of regular polygon.

Polygons meet edge-to-edge.

This is not a
regular tiling.

What are the three regular tilings of the Euclidean plane?

Tiling by squares

Tiling by regular

hexagons

Tiling by regular
triangles

The three regular tilings of the Euclidean plane.

Definition:
An (n, k) tiling is a regular tiling
by n-sided polygons,
meeting k to a vertex.

This is the

 $(3,6)$ tiling of the plane.

Which tilings are these?

The (4,4) tiling and the (6,3) tiling.

Tilings on the Sphere

From last time:

On the sphere,
lines are great circles.

Triangles have

angle sum

bigger than
180°.

Example:

we can use this triangle
to make a $(3,4)$
tiling of the

sphere.

Platonic Solids

Use the paper cutouts to

 make these polyhedra: cube, tetrahedron, \square octahedron, icosahedron, dodecahedronWhich
polyhedron matches the $(3,4)$ tiling?

The

octahedron

 matches the $(3,4)$ tiling.

Problem: Which tilings do

 these polyhedra match?∇ tetrahedron
octahedron
icosaherdon
cube
dodecahedron

tetrahedron: $(3,3)$ tiling

 octahedron: $(3,4)$ tiling icosahedron: $(3,5)$ tiling
cube: $(4,3)$ tiling

dodecahedron: $(5,3)$ tiling

If we put 3,4 , or 5 regular triangles around each
vertex, we get a tiling of the SPHERE.

What happens if we put 6?

The $(3,6)$ tiling

 fills the Euclidean plane.

What happens if we put 7 regular triangles at each vertex?

Here is a hand drawn sketch

 of a bit of $a(3,7)$ tiling.

What kind of geometry
does this look like?

From last time:

On the
hyperbolic

plane,
triangles have
angle sum less than 180°.

Picture credit: Keith Conrad

Here is a $(3,7)$ tiling.

Can we put the $(4,5)$ tiling into the hyperbolic plane?

You can make a piece of the

 $(4,5)$ tiling with paper and tape.

A piece of a $(4,5)$ tiling.

We can tile hyperbolic space with a $(4,5)$ tiling.

Notice how lines that start near each other end up far apart.

More examples:

 Here are the $(8,3)$ and $(5,4)$ tilings of hyperbolic space.

Picture: Don Hatch

Problem:

Find a simple formula in n and k that tells you if the
(n, k) tiling fits on the sphere, the Euclidean plane, or the hyperbolic plane.

Data:

Spherical: $(3,3)(3,4),(3,5)$,

$$
(4,3),(5,3)
$$

Euclidean: $(3,6),(4,4),(6,3)$

Hyperbolic: $(3,7),(4,5),(5,4)$,
$(8,3)$, and lots of others

An (n, k) tiling is

Spherical if $1 / n+1 / k>1 / 2$

Euclidean if $1 / n+1 / k=1 / 2$

Growth Rates

In Euclidean

space, the disk of radius 1 has 6 triangles.

The disk with radius 2 has $6+18=24$ triangles altogether.

Problem:

How many

triangles are
in the disk of radius 3 ?

Problem:

Find a formula for the number of triangles in a disk of radius R.
radius 1: 6 radius 2: 24 radius 3: 54 radius 4: 96 radius 5: 150

radius 1: 6 radius 2: 24 radius 3: 54 radius 4: 96 radius 5: 150 radius R : $6 \mathrm{R}^{2}$

Hyperbolic Tilings

Now let's look at the $(3,7)$ tiling.

Again, we count the number of triangles in
disks of
radius 1, 2, 3,
and so on.

Picture credit: Keith Conrad

Radius 1: 7

 Radius 2: 35 Radius 3: 112 Radius 4: 315 Radius 5: 847 Radius 6: 2240

Picture credit: Keith Conrad

A radius 10 disk in the $(3,6)$ Euclidean tiling has
600 triangles.

A radius 10 disk in the $(3,7)$ hyperbolic tiling has 105875 triangles.

On the hyperbolic

plane, the area inside
a circle grows much
faster - more like 3 R

$$
\text { than } R^{2}
$$

Perhaps this is

why some
plants and animals look hyperbolic more surface area means more nutrients.

Puzzle:

Find a recurrence
describing the number of triangles in each ring.

Ring 1: 7
Ring 2: 28
Ring 3: 77
Ring 4: 203
Ring 5: 532
Ring 6: 1393

Picture credit: Keith Conrad

Tilings in 3 dimensions

$(4,3,4)$ Euclidean tiling - 4
cubes meet around each edge.

$(5,3,4)$ hyperbolic tiling by dodecahedrons

$(6,3,3)$ tiling

$(6,3,5)$ tiling

شكرا جزيلا !

Some cool links

1. https://www.youtube.com/watch?
$\mathrm{v}=$ YzzJGeiucNg\&nohtml5=False
2. $\mathrm{https}: / /$ johncarlosbaez.wordpress.com/2014/05/14/ hexagonal-hyperbolic-honeycombs/
3. http://www.plunk.org/~hatch/ HyperbolicTesselations/
4. $h t t p: / / w w w . j o s l e y s . c o m / s h o w _g a l l e r y . p h p ? g a l i d=325$
5. https://www.youtube.com/watch?v=p7HB2cfZ4mw
