SARSI 2016

First Week Lectures

Math - Kim Whittlesey

Lecture 3

Geometry of Surfaces
هندسة السطوح

Surfaces

A torus
 looks like the skin of a donut.

The torus is
the surface,
not the inside.

A genus 2 torus
or "double" torus
has two handles.

The genus is the number of handles.

The skin of this pretzel has genus 3.

The sphere is also a surface.

The sphere is also a surface.

 It has genus0.

If you cut a torus along a circle through the hole, you get a cylinder.

What do you
get if you cut the torus
along both of the curves
shown?

You get a rectangle.

If try to make a

 torus out of a square of paper, it won't look the same, since paper is not very stretchy.
Imagine this room:

If you go out the back wall, you come in through the front.
If you go out the
right wall, you

come in through the left.

We call this the "flat
 torus."

Problem:

Here is another gluing patten with a hexagon. What surface does it create if we glue it back
 up?

You get the torus again.

Next, let's cut up the double torus. There are lots of possible ways to cut it open.

Use the stuffed double torus and yarn to help imagine the cuts.
(Please don't actually cut the torus.)

Here is my favorite way to cut open the double torus.

It gives an octagon with
 pointy corners.

All 8 corners meet at the
same point.

Here is the glueing
 pattern.

Covering Maps

"Map" from infinite time line to clock.

Every 1 am and 1 pm map to the same " 1 " on clock.

We call this function an "infinite covering map"

What times on the time line map to the interval $(1,2)$ on the clock?

7:00 MON
19:00 MON

A half day covers the whole circle.

Covering maps in two dimensions

From last time: the $(4,4)$ tiling of Euclidean plane

We can cover the torus with the Euclidean plane.

When we glue, four corners meet at one point, just like in the tiling.

Double Torus

We can

 unwrap the double torus
into an octogon.

What space can we tile with octagons, meeting 8 to a vertex?

We can use an $(8,8)$ tiling of hyperbolic space to cover the double
 torus.

These covering spaces give us one way to define "straight lines" on the surfaces.

Here is a line on the plane. How does it map down to the torus?

The first segment of the line maps down to a segment in the torus.

The second segment of the line also maps down to a segment in the torus.

The line traces over and over these two segments.

We can glue the square
 back into a cylinder.

And then glue the cylinder back into a

torus, so the two segments make a curve.

How would a line of slope $3 / 2$ map down to the torus?

Here is the line of slope $3 / 2$ on the torus.

A line of slope $3 / 2$ goes 3
times through the hole
and 2 times around it.

We can also

 put "hyperbolic straight lines" on the double torus.

Higher dimensions

This Euclidean tiling by cubes covers the 3dimensional torus.

In a three

dimensional
torus, if you go out the ceiling, you come back up through the

floor.

Poincaré Dodecahedral Space: Glue opposite faces with a $1 / 10$ turn. This space is covered by the 3-sphere.

sculpture by Henry Segerman
To make the 2-sphere, add one point "at infinity" to the plane.

sculpture by Henry Segerman

To make the 3-sphere, add one

 point "at infinity" to three space.

Picture Credit: Weeks 1985
The $(5,3,3)$ tiling of the 3 -sphere. There is one more infinite dodecahedron outside the shown figure.

Picture Credit: Weeks 1985

Seifert-Weber space: glue

 opposite faces using a $3 / 10$ turn instead.

The $(5,3,5)$ tiling of hyperbolic space covers the Seifert-Weber space.

There are 8 model geometries for 3-dimensional "manifolds":

Euclidean, Spherical, Hyperbolic 3-space
Sphere X line, Hyperbolic plane X line,
Nil Geometry, Sol Geometry,
Geometry of the universal cover of SL(2,R)

Recent result: Thurston's

geometrization conjecture

Any compact 3-manifold without boundary can be decomposed into pieces so that each piece has one of the 8 model geometries.

This result implies the Poincaré conjecture, worth $1,000,000 \$$ to solve.
شكرا جزيلا !

Some interesting links:

1. https://www.youtube.com/watch?

$$
\mathrm{v}=\mathrm{c} _ \text {O58ewaoPk }
$$

2. https://www.youtube.com/watch? $v=A A s I C M P w G P Y$
3. http://nilesjohnson.net/hopf.html
4. https://vimeo.com/47049144
