SARSI 2016

First Week Lectures
Math - Kim Whittlesey

$$
\begin{gathered}
\text { Lecture 4: Groups } \\
\text { مجموعة }
\end{gathered}
$$

Groups

Clock addition

Circle (clock) addition:

examples:
$9+4=1$
$10+4=2$
$11+1=0$

We have a set of numbers:
$\{0,1,2,3,4,5$,
$6,7,8,9,10,11\}$.

We also have the operation " + ".

6

\wp	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	4	5	6	7	8	9	10	11	0
2	2	3	4	5	6	7	8	9	10	11	0	1
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	6	7	8	9	10	11	0	1	2	3
5	5	6	7	8	9	10	11	0	1	2	3	4
6	6	7	8	9	10	11	0	1	2	3	4	5
7	7	8	9	10	11	0	1	2	3	4	5	6
8	8	9	10	11	0	1	2	3	4	5	6	7
9	9	10	11	0	1	2	3	4	5	6	7	8
10	10	11	0	1	2	3	4	5	6	7	8	9
11	11	0	1	2	3	4	5	6	7	8	9	10

This table shows all of the combinations.

In circle addition,

 the number 0 is special:$0+1=1$
$2+0=2$
and so on.
We say 0 is the IDENTITY
element.

Every number

Two elements are

INVERSES if they combine

 to make the IDENTITY.$$
a+(-a)=0
$$

the Even Integers

Set:

$$
\{\ldots,-4,-2,0,2,4,6,8, \ldots\},
$$

Operation: +

What is the IDENTITY

element here?

What is the IDENTITY

element here?

$$
2+0=0+2=2
$$

What is the inverse of 4 ?

What is the inverse of 4 ?

$$
4+(-4)=0
$$

Is the sum of two

 even numbers always even?
Is the sum of two even numbers always

 even?

 even?}

Yes: $2 k+2 m=2(k+m)$

New set: powers of 2

New operation: multiplication

> Powers of $2:$
> $\{\ldots, 1 / 8,1 / 4,1 / 2,1,2,4,8, \ldots\}$ Use the operation " x ".

Problem: For the set of powers of 2 , with multiplication:
A. Find the identity.
B. What is the inverse of $2{ }^{a_{2}}$?
C. Is the product of 2^{a} and 2^{b} also a power of 2 ?

What is the identity element?

What is the identity element?

$$
\begin{aligned}
1 \times 2 & =2 \\
1 \times 4 & =4 \\
1 \times 1 / 2 & =1 / 2
\end{aligned}
$$

How can we find inverses?

How can we find inverses?

$$
\begin{aligned}
& 2 \times 1 / 2=1 \\
& 1 / 4 \times 4=1
\end{aligned}
$$

Is the product of two powers of two also a power of two?

Is the product of two powers of two also a power of two?

$$
\begin{aligned}
& 2 \times 8=16 \\
& 1 / 2 \times 4=2
\end{aligned}
$$

Is the product of two powers of two also a power of two?

$$
\begin{gathered}
2 \times 8=16 \\
1 / 2 \times 4=2 \\
2^{a} \times 2^{b}=2^{a+b}
\end{gathered}
$$

There is also one more

technical condition we need:

 the operation must be associative:$$
A *(B * C)=(A * B) * C
$$

The set of powers of 2 , with the operation " x ", forms a GROUP.

We can also "multiply" things other than numbers.

Let's look at

 symmetriesof an
equilateral triangle.

Cut out an

equilateral

triangle, label
the corners on
the front and

back, and draw
something.

You can rotate

 the triangle by 120° clockwise. Call thissymmetry R.

You can also flip the triangle across
 a vertical line.

Call this
symmetry V .

You can also

just leave the triangle alone.

Call this
symmetry I.
(This is the identity.)

What happens

if we first do R and then V ?

We call this new symmetry $R^{*} V$

True or False? $R^{*} R^{*} R=I$

$$
V^{*} V=I
$$

$$
R^{*} V=V^{*} R
$$

True or False?

$$
R^{*} V=V^{*} R^{*} R
$$

Problem: Draw all of the

 symmetries of the equilateral triangle. Label the pictures as products of V and R.

R*R

We have $R^{*} R^{*} R=I, V^{*} V=I$, and $R^{*} R^{*} V=V^{*} R$

How to draw pictures of groups.

Circle addition:

Draw a dot for each element of the group.

Connect elements p and q
 if $1+p=q$.

We say 1 is a GENERATOR
since we can get to ANY element
by adding or subtracting enough l's to
 the identity.

Graph of the even integers. The generator is 2 .

Lets draw the graph for the symmetries of the triangle.

R

$$
\mathbf{V}^{*} \mathbf{R}=\mathbf{R}^{*} \mathbf{R}^{*} \mathbf{V}
$$

Symmetries of the triangle.

The edges for generator R. Example: edge from V to $R^{*} V$

The edges for generator V. Example: edge from R to $V^{*} R$

The entire graph.

VVRRVRVVR equal to?

One method: use the equations to simplify VVRRVRVVR.

Or: trace through the graph to see VVRRVRVVR $=\mathrm{V}$.

Some More Groups

Permutations of $(1,2,3,4)$

0

0

0
O

"integers x integers"
Pairs of integers (x, y), with addition.

Use $A=(0,1)$ and

$B=(0,1)$ as generators.

What kind of geometry does this look like?

This group has generators
A and B, but no equations.

This group has generators C and D, where $C C C C C=I$ and $D D D=I$

Most groups do not actually fit in the plane.

Generators: T,A

Equation:
AAT $=T A$

Here is z^{3}, with generators $A=(1,0,0), B=(0,1,0)$, and $C=(0,0,1)$.

Geometry of Groups

What are "straight lines"?

"Straight lines" are shortest paths.

How many shortest ways are there to write the element AAABB?

10 shortest ways to write this element: BBAAA, BABAA, BAABA, BAAAB, ABBAA, $A B A B A, A B A A B, ~ A A B B A, ~ A A B A B, ~ A A A B B$

What geometry does this look like?

There is just one shortest way to write AAABB.

Puzzle: Draw the group of symmetries of a snowflake.

fold
(eyeball this step)

fold

make cuts here

Instructions for making a

 snowflake.شكرا جزيلا !

Some cool links

1. Vi Hart's doodle music:
https://www.youtube.com/watch?
$v=A v _U s 6 x H k U c$
2. Group theory
http://www.math.uconn.edu/~kconrad/
math216/whygroups.html
3. Symmetry groups:
https://www.youtube.com/watch?
$\mathrm{v}=\mathrm{OHA} 6 \mathrm{Hcj} 7 \mathrm{P} 80$
