SARSI 2016

First Week Lectures
Math - Kim Whittlesey

Lecture 5:

Braids, Google Map Space,
and the Universe
الضفائر و خرائط جوجل و الكون

Braid groups

Some braids

Some more braids

We'll start with braids

 with 3 strands.

Use three

 cords and a piece of tape to make one of these:

Try making these two braids.

We'll call them A and B.

A

B

We can
 "multiply"
 braids by
 stacking them.
 Here is braid
 $A^{*} B^{*} B$ or
 ABB

Here is the
 identity braid.
 We'll call it I.

Two braids are the SAME if you can "comb" one of them to other while keeping the
 ends fixed.

Here are A and
A^{-1}, its inverse.

If you comb
$A^{-1} * A$,
you get I.

Problem:

What is the pattern for the "usual"
braid that you
put into hair?

The pattern is $A B^{-1} A B^{-1} A$...

Problem:

Is $B A B=A B A$?
Use your strings to check.

You can comb

 the braid BAB so that it becomes ABA.So, $A B A=B A B$ in the group.

The set of braids, with this kind of "multiplication", forms a GROUP.

Problem:

Simplify this

braid as much

 as possible:$A B^{-1} A^{-1} B A B B$

$A B^{-1} A^{-1} B A B B$
 $A B^{-1} A^{-1} A B A B$
 =
 AAB

This is the "full twist" braid, ABABAB.

A full twist on a belt

is the same as a loop-de-loop.

True or False:

(ABABAB) $A=A$ (ABABAB) ($A B A B A B) B=B$ ($A B A B A B)$
$A B A B A B$ can
slide up to the TOP of the braid without changing the rest of the braid.

We can modify

the braid group

slightly
by adding the equation
$A B A B A B=I$.

Adding
$A B A B A B=I$ is like moving all the full
twists to the top, and then cutting them off.

Let's draw the

 (modified) braid group.
Let
 $R=A B$
 $V=A B A$

Then
$R R R=(A B)(A B)(A B)=I$ and
$V V=(A B A)(A B A)=I$.

Recall this group: generators R and V, with RRR $=\mathrm{I}, \mathrm{VV}=\mathrm{I}, \mathrm{RV}=\mathrm{VRR}$

The group with generators R and V, with $\mathrm{RRR}=\mathrm{I}$ and $\mathrm{VV}=\mathrm{I}$.

What kind of geometry does this look like?

The modified braid group fits nicely in hyperbolic space.

To get the full braid group, imagine going "up" one level if you go around RRR or VV.

If you go

 around RRR or VV, you go up a level.

The full braid group looks like an infinitely tall parking garage with ramps up for every RRR and VV.

Google Map Space

What kind of

geometry does

Google Map Space have?

Points in Google Map Space:

All possible Google map images.

Arrows:

I, O: zoom in or out
N, S, E, W: swipe north, south, east or west

What are the

shortest paths in this

> space?

how do you go from a

 view of downtown Chicago
to a view of downtown Damman?

To get from Chicago to Dammam,

zoom out 10 times, then swipe east and south, then zoom in 10 times.

much, it takes more swipes.

If we only zoom out 3 times, it would take over 60 swipes.

What kind of geometry does this remind you of?

Recall: Upper Half Plane

 model of hyperbolic spaceidea and picture: Yuliy Baryshnikov

Shortest paths in Google Map

 Space go up (zoom out), and then over, and then back down.

Upper Half Space Model of hyperbolic 3-space

Google Map Space is (locally) like hyperbolic 3-space.

The Universe

GEOMETRY OF THE UNIVERSE

FLAT

CLOSED
picture: NASA
What 3-dimensional geometry does the universe have?

Is it hyperbolic,
spherical, or Euclidean?

Some people thought the universe might be a Poincaré Dodecahedral Space, which has spherical geometry.

But recent measurements of background microwave radiation suggest that the universe is pretty close to flat. (Boomerang, WMAP, Planck)

But WHY is the geometry of the universe so close to flat?

One theory

 is calledInflation: an extremely brief, extremely rapid expansion at the start of time.

A really big sphere looks flat to an ant walking on it, as space does to us.

But whatever the reason, the data suggests that the universe is pretty close to flat.

But could it be a threedimensional torus?
شكرا جزيلا !

Some cool links:

1. Vi Hart makes math cookies: https://vimeo.com/147902577
2. https://publish.illinois.edu/ymb/2014/08/10/ hyperbolic-geometry-of-google-maps/
3. http://map.gsfc.nasa.gov/universe/uni_shape.html
4. Thurston goes around a trefoil: https://www.youtube.com/watch?v=IKSrBt2kFD4
