SARSI 2016 First Week Lectures Math – Kim Whittlesey

Lecture 5: Braids, Google Map Space, and the Universe الضفائر و خرائط جوجل و الكون

Braid groups

Some braids

Some more braids

Standard Braid

Trick Braid

3 in 5 mixed Braid

Some more braids

We'll start with braids with 3 strands.

Use three cords and a piece of tape to make one of these:

We can "multiply" braids by stacking them.

Here is braid A*B*B or ABB

Here is the identity braid.

We'll call it I.

Two braids are the SAME if you can "comb" one of them to other while keeping the ends fixed.

Here are A and A^{-1} , its inverse. If you comb $A^{-1}*A$ you get I.

Problem: What is the pattern for the "usual" braid that you put into hair?

The pattern is AB⁻¹AB⁻¹A...

Problem:

Is BAB = ABA? Use your strings to check.

You can comb the braid BAB so that it becomes ABA. So, ABA = BABin the group.

The set of braids, with this kind of "multiplication", forms a GROUP.

Problem: Simplify this braid as much as possible: AB-1A-1BABB

$AB^{-1}A^{-1}BABB$ AB-1A-1ABAB AAB

This is the "full twist" braid, ABABAB.

A full twist on a belt is the same as a loop-de-loop.

True or False: (ABABAB) A = A (ABABAB) (ABABAB) B = B (ABABAB)

ABABAB can slide up to the TOP of the braid without changing the rest of the braid.

We can modify the braid group slightly by adding the equation ABABAB = I.

Adding ABABAB = Iis like moving all the full twists to the top, and then cutting them off.

Let's draw the (modified) braid group.

Let R = AB V = ABA

Then RRR = (AB)(AB)(AB) = Iand VV = (ABA)(ABA) = I.

Recall this group: generators R and V, with RRR = I, VV = I, RV = VRR

The group with generators R and V, with RRR = I and VV = I.

What kind of geometry does this look like?

The modified braid group fits nicely in hyperbolic space.

To get the full braid group, imagine going "up" one level if you go around RRR or VV.

If you go around RRR or VV, you go up a level.

The full braid group looks like an infinitely tall parking garage with ramps up for every RRR and VV.

Google Map Space

What kind of geometry does Google Map Space have?

<u>Points in Google Map Space:</u> All possible Google map images.

Arrows:

I, O: zoom in or out N, S, E, W: swipe north, south, east or west

What are the shortest paths in this space?

how do you go from a view of downtown Chicago

to a view of downtown Damman?

To get from Chicago to Dammam, zoom out 10 times, then swipe east and south, then zoom in 10 times.

If we only zoom out 3 times, it would take over 60 swipes.

Recall: Upper Half Plane model of hyperbolic space

idea and picture: Yuliy Baryshnikov

Shortest paths in Google Map Space go up (zoom out), and then over, and then back down.

Upper Half Space Model of hyperbolic 3-space

Google Map Space is (locally) like hyperbolic 3-space.

idea and picture: Yuliy Baryshnikov

The Universe

picture: NASA

What 3-dimensional geometry does the universe have?

Is it hyperbolic,

spherical, or Euclidean?

Some people thought the universe might be a Poincaré Dodecahedral Space, which has spherical geometry.

But recent measurements of background microwave radiation suggest that the universe is pretty close to flat. (Boomerang, WMAP, Planck)

But WHY is the geometry of the universe so close to flat?

One theory is called Inflation: an extremely brief, extremely rapid expansion at the start of time.

But whatever the reason, the data suggests that the universe is pretty close to flat.

But could it be a threedimensional torus?

شكرا جزيلا !

Some cool links:

1. Vi Hart makes math cookies: <u>https://vimeo.com/147902577</u>

- 2. <u>https://publish.illinois.edu/ymb/2014/08/10/</u> <u>hyperbolic-geometry-of-google-maps/</u>
- 3. <u>http://map.gsfc.nasa.gov/universe/uni_shape.html</u>

4. Thurston goes around a trefoil: https://www.youtube.com/watch?v=IKSrBt2kFD4